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ABSTR_2T

We consider a common variant of the vehicle routing

problem in which a vehicle fleet delivers products stored

at a central depot to satisfy customer orders. Each vehicle

has a fixed capacity, and each order uses a fixed portion

of vehicle capacity. The routing decision involves deter-

mining which of the demands will be satisfied by each vehicle

and what route each vehicle will follow in servicing its

assigned demand in order to minimize total delivery cost.

We present a heuristic for this problem in which an

assignment of customers to vehicles is obtained by solving a

generalized assignment problem with an objective function

that approximates delivery cost. This heuristic has many

attractive features. It has outperformed the best existing

heuristics on a sample of standard test problems. It will

always find a feasible solution if one exists, something no

other existing heuristic can guarantee. It can be easily

adapted tc accommodate many additional problem complexities.

By parametrically varying the number of vehicles in the fleet,

our method can be used to optimally solve the problem of finding

the minimum size fleet that can feasibly service the specified

demand.



1. Intrcduction

Vehicle routing is a challenging logistics management

problem. There are many variations of the problem ranging

from school bus routing to the dispatching of delivery trucks

for consumer ioods. In all cases, the basic components of the

problem are a fleet of vehicles with fixed capabilities (capaci-

ty, speed, etc.) and a set of demands for transporting certain

objects (school children, consumer goods, etc.) between speci-

fied pickup and delivery points. The routing decision involves

determining which of the demands will be satisfied by each

vehicle and what route each vehicle will follow in servicing

its assigned demand. These decisions should be made to minimize

the cost of operating the vehicle fleet. Principal cost

items include fuel, personnel, and vehicle depreciation.

These costs are usually large and highly sensitive to how

routing decisions are made. Vehicle routes must also satisfy

a variety of constraints arising from factors such as fixed

vehicle capacity and union regulations on driver work schedules.

We consider a common variant of the vehicle routing problem.

A vehicle fleet delivers products stored at a central depot

to satisfy customer orders that cover some period of time

into the future. The customers specify their orders prior to

the start of each period, and the vehicles must then be scheduled

to deliver the period's orders. Each vehicle has a fixed

capacity, and each order uses a fixed portion of vehicle

capacity. Examples include scheduling the deliveries of a

large department store and of a processed food distributer.
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To provide a precise statement of this problem we intro-

duce notation and specify an integer programming formulation.

Constants

K = number of vehicles

n = number of customers to which a delivery must be
made. Customers are indexed from 1 to n and index 0
denotes the central depot.

bk  = capacity (weight or volume) of vehicle k.

ai = size of the delivery to customer i.

cij = cost of direct travel from customer i to customer j.

Variables
lp if the order from customer i is delivered byik= vehiclek

0, otherwise

1, if vehicle k travels directly from customer i
x = to customer jijk 0, otherwise

An integer programming formulation of the problem of

routing to minimize cost subject to vehicle capacity con-

straints is given below. We denote this problem by (VRP).

L. . . . .. i
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Formulation of the Vehicle Routing Problem (VRP)

min Z c X. (1)ijk 1) i jk

S.t. Z aiYik < bk , k ,...,K (2)
1

SYik (3)

k Ii 1 ,....n

Yik = 0 or 1, i 0,...n (4)

Xijk = Yjk' =0,...,n (5)

xi  = Yi 0,.,n (6)ik'

Z xijk < IsI-1, S 1,... ,n} (7)
ijeSxS 2 SI < n-I

xij k -- 0 or 1, i 0 ,...,n (8)
j =0,...,n

Two well-known combinatorial optimization problems are

embedded within this formulation. Constraints (2) - (4) are

the constraints of a generalized assignment problem and insure

that each route begins and ends at the depot (customer 0), that

every customer is serviced by some vehicle, and that the load

assigned to a vehicle is within its capacity. If the Yik are

fixed to satisfy (2) - (4), then for given k, constraints

(5) - (8) define a traveling salesman problem over the customers

assigned to vehicle k.
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Literally person-centuries have been devoted to developing

a sophisticated solution theory for the traveling salesman and

generalized assignment models embedded within (VRP). By con-

trast, existing computer-based methods for (VRP) are relatively

simple and use little of this theory. Because of the complexity

of (VRP), all previously proposed practical methods have been

heuristics that find an approximately optimal solution.

Existing heuristic methods are reviewed in section 2 and shown

to suffer from a serious limitation. Vehicle capacity constraints

do not play a central role in the decision rules of these methods

so that tightly constrained problems can easily terminate with

a poor or infeasible solution. This difficulty has been recog-

nized by several researchers and practitioners as a serious

barrier in the use of these methods (Christofides [31, Krolak andNelson

(121, Rau (171, Shuster and Schur (201).

We present here a new heuristic for (VRP) in which an

assignment of customers to vehicles is obtained by solving a

generalized assignment problem with constraints (2) - (4) and

an objective function that approximates the cost of the

traveling salesman problem tours that must be made for each

vehicle to service its assigned customers. Once this assign-

ment has been made, a complete solution is obtained by applying

any traveling salesman problem heuristic or optimizing algorithm

to obtain the delivery sequence for the customers assigned to

each vehicle.

A detailed description of this generalized assignment

heuristic is given in section 3. In section 4 we present the
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results of computational testing on a sample of standard test

problem taken from the literature. In these tests, the new

heuristic proposed here outperformed the best existing vehicle

routing heuristics.

In addition to this outstanding computational performance,

our heuristic has several attractive attributes. First,

because the essential feasibility constraints (2) and (3)

are included in the generalized assignment problem, the

heuristic will always find a feasible solution if one exists.

Second, when the generalized assignment problem is solved,

we are considering the impact of a customer assignment to a

vehicle on every other possible assignment in light of vehicle

capacity constraints. This avoids a problem faced by sequential

assignment or limited adjustment heuristics that can "paint

themselves into a corner" by unknowingly making initial assign-

ments that eventually force very expensive assignments in order

to maintain feasibility. Third, the method can easily be

adapted to accommodate a number of important problem complexities,

including multiple depots, multiple time periods, the option of

not delivering to a customer at a penalty, constraints on the

time duration of a vehicle route, and multiple capacity con-

straints (e.g., weight and volume). Finally, by applying our method

a number of times for different values of K and (bI ,...,bK), it is

possible to determine the tradeoff between fleet size and the

operating costs included in objective (1) of (VRP). This

kind of parametric analysis would be useful, for example, in

evaluating vehicle acquisition decisions. Also, because our

method will always find a feasible solution if one exists, it

"I- I I I II " " i i I i I l l. ... .. -.. .. I
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is possible to use our method with parametric variation of K

to optimally determine the minimum fleet size that can feasibly

service a fixed set of demand requirements.
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2. Review of Existing Methods

Past work on (VRP) has been concerned almost exclusively

with heuristics. The heuristics which have been developed for

(VRP) are largely modifications of traveling salesman problem

heuristics and are of four types.

i) tour building heuristics.

ii) tour improvement heuristics.

iii) two-phase methods.

iv) incomplete optimization methods.

In the first type a link between two customers is sequen-

tially added until all customers have been assigned to some route.

Every time a link is added, the vehicle capacity constraints are

checked for violation. The choice of a link is motivated

by some measure of cost savings.

Tour improvement heuristics begin with a feasible vehicle

schedule. At every iteration some combination of links are

exchanged for another and a check is made to see if the

exchange is both feasible and reduces cost.

In the two-phase method, customers are first assigned to

vehicles without specifying the sequence in which they are to

be visited. In phase 2, routes are obtained for each vehicle

using a traveling salesman problem heuristic.

Incomplete optimization methods apply some optimization algorithm,

such as branch and bound, and simply terminate prior to optimality.

The most often used tour building heuristic is the Clarke

and Wright method [5]. The Clarke and Wright method begins
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with an infeasible solution in which every customer is supplied

individually by a separate vehicle. By combining any two

of the customers we would use only one of the two vehicles

and also reduce the solution cost. Recall that customer o

denotes the central depot. The cost of serving customers

i and j individually by two vehicles is coi + cio + Coj + Cj

while the cost of one vehicle visiting i and j sequentially

on the same route is coi + cij + cjo. Thus, combining i and j

results in a savings of

sij = cio + C - cij.

Clarke and Wright link the customers i and j with maximum sij

subject to the requirement that the combined route be feasible.

Customers i and j are now regarded as a single macro customer.

A vehicle may travel from city £ to the macro customers at a

cost of czi and from the macro customer to X at a cost of cj,.

With this convention, the route combining operation can be

applied repeatedly.

Savings are ordered from the greatest to the least, and this

list is scanned from the top to generate a sequence of partial

routes, each time checking for feasibility. In scanning the

list we can simultaneously for= partial routes for all vehicles

or sequentially add customers to a given route until the

vehicle is loaded. The latter is called the sequential Clarke

and Wright method.

There have been many modifications to the basic Clarke and

Wright method. Gaskell (9] and Yellow (221 independently

introduced the concept of a modified savings given by sij - ecij

where 9 is a scalar parameter. By varying 8, one can place
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greater or less emphasis on the cost of travel between two

nodes, depending on their position relative to the central

depot. This parameter can be altered and different solutions

obtained. The best of these is then chosen. Golden et al.

(11] have used computer science techniques to substantially

reduce the running time of Clarke and Wright.

The tour improvement heuristics are based on t' Lin

[131and Lin-Kernighian [14] heuristic for the traveling sales-

man problem. Christofides and Eilon [2] and Russell [19]

have modified this heuristic for vehicle routing.

Two phase methods include those of Tyagi [21] , Gillett

and Miller [101, and Christofides et al. [4]. The methods

in [21] and [10] both use a modified Lin-Kernighan heuristic

in phase 2. In phase 1, both methods use the distance between

customers as cost. Tyagi assigns customers sequentially to

vehicles using a nearest neighbor rule. Each customer assigned

to a vehicle is chosen to be closest to the customer last

assigned to that vehicle.

Gillett and Miller use a "sweep" algorithm for phase 1

4n which the location of customers is represented in a polar

coordinate system with origin at the central depot. A customer

is chosen at random and the ray from the origin through the

custorer is "swept" either clockwise or counter-clockwise.

Customers are assigned to a given vehicle as they are swept,

until the capacity constraint for that vehicle is reached.

* Then a new vehicle is selected and the sweep continues, with

assignments now being made to the new vehicle.
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The Christofides et al. (4] two phase method begins by

applying a minimal insertion cost heuristic for inserting

customers to emerging routes. At each step, the Lin-Kerniglan

heuristic is applied to the customers that have been assigned to each

vehicle. In phase 2, a customer ik is designated in each of

the routes formed in phase 1. Beginning with the K routes

that join the depot to ik, k = 1.... ,K, the remaining customers

are inserted using a rule based on the cost of inserting a

customer in alternative routes.

The only example of a heuristic based on incomplete

optimization of which we are aware is the tree-search method

reported in (4]. This is essentially a branch and bound

algorithm turned into a heuristic by early termination.

We conclude this subsection with the observation that none

of the methods described here place much emphasis on the vehicle

capacity constraints. While these constraints are checked

for violation wherever possible, they have no other influence

cn the choices that are made in forming a solution. For this

reason, existing heuristics can easily terminate with an

infeasible or bad solution if capacity constraints are

moderately tight.
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3. A New Heuristic for (VRP)

The basic idea of our approach can be described in terms

of the following reformulation of (VRP) as a nonlinear general-

ized assignment problem.

min r (1')ranZf(yk )  '
k

s.t. Z aiyik bk k = I,...,K (2)i

K, i = 0

k

Yik =0 or , i =0,...,n (4)

where f(yk) is the cost of an optimal traveling salesman

problem tour of the customer in N(y-k) = {irYik - 1}. The

function f(yk ) can be defined mathematically by

f(yk )  min k cijxij k  (1")ijk

s.t. . xijk = Yjk' j = 0,... ,n

Z xijk = Yik' i = 0,...,n (6')

X ik < ISI-l, S c ,.... ,n} (7')ijESxS k-- '"

2 < Is< n-1

xij k = 0 or 1, i = 0,... ,n (8')

j = 0, . ,
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Of course, f(yk ) is an extremely complicated function

and cannot even be written down for nontrivial problems.

Our heuristic is based on constructing a linear approximation

n

il dik Yik of f(yk
) and solving (W'), (2), (3), (4) with

Wi) replaced by

K n
Z Z dikYik ("

k=l i=l

The solution of this linear generalized assignment problem

defines a feasible assignment of customers to vehicles.

We then determine a delivery sequence for the customers assigned

to each vehicle by applying any traveling salesman problem

heuristic or optimizing algorithm.

There are many plausible methods for constructing a

linear approximation of f We first describe a simple

method that was used to obtain the computational results

reported in the next section. Then we indicate some possible

variations.

We begin with a set of "seed" customers iI .... ,iK that are

assigned to vehicle 1,...,K respectively. The coefficient

dik is then set to the cost of inserting customer i into the

route in which vehicle k travels from the depot directly to

customer ik and back. Specifically,

dik = min[coi + ciik + cikO , coik + ciki+ ciO] - [coik + ciko].

Figure 1 shows this computation for an example that we created for

illustrative purposes. In this example n = 25, K = 7, and the ciA

are given by the Euclidean distance between points.
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We have chosen customers 4, 7, 10, 13, 16, 20 and 24 as seed

customers. The figure shows the 7 seed routes and the compu-

tation of dik for i = 23 and k the vehicle assigned to customer

24. The solution obtained by the generalized assignment

heuristic has cost 159.59 and is shown in figure 2. For

comparison, the Sweep solution which has a cost of 166.73 is shown

in figure 3. The Clarke and Wright solution had a cost of 164.03.

Seed customers can be selected either by an automatic

rule or by a scheduler who has responsibility for operating

the computerized routing system and implementing its output.

There are many advantages to the latter approach. Usually

the scheduler has some "feel" for the problem and appreciates

the opportunity to make this experience known to the computer

system. There are many considerations he can use to select

seed customers. For example, customers often lie along radial

corridors corresponding to major thoroughfares, and the most

distant customers along these corridors are natural seed

customers. Customers for which ai > 1/2 bk can also be made

seed customers, since any pair of these cannot be on the same

route. If our heuristic is implemented on an interactive

computer system with graphics display, the scheduler can

experiment with different selections of seed customers and

immediately see the effect on cost and routing decisions.

This gives him a sense of involvement and control that is

crucial to a successful implementation.

To illustrate the possibilities for automatic selection

of seed customers, we will describe the rule we've used in
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our computational experiments. This rule will be given for the

planar case (all customers are located at points in a plane

and cij is the Euclidean distance between points i and j)

with bk = b for all k. It can be generalized to

other cases. We determine K seed points Wl,. ..,wK in the

plane rather than K seed customers. These points are used

exactly like seed customers to initialize the heuristic.

To determine Wl,...,w,<, the plane is partitioned into K cones

corresponding to the K vehicles. Then wk

is located on the ray bisecting cone k.

To determine these cones, we first partition the plane

into n smaller cones, one for each customer.

The infinite half ray forming the boundary between two

customer cones is positioned to bisect the angle formed by

half rays through the two immediately adjacent customers.

Associate the weight ai with customer cone i and define

n
Z aii=l- -1

a= Kb" Each vehicle cone is then formed from a contiquous

group of customer cones or fractions of customer cones.

The weight of the group is required to equal ab. A fraction

of a customer cone contributes the same fraction of its weight

to the total group weight. The point wk is located along the ray

bisecting the kth cone. The distance of wk from the origin is

fixed so that the weight included inside the arc through wk is .75ab.

This weight is defined to equal the sum of the ai

for all customers inside the arc
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plus a fraction of ai for the customer just outside the arc. This
A

fraction is Ar where A is the distance to the arc from

the customer just inside the arc and B is the distance to

the arc from the customer just outside the arc.

This process is illustrated in Figure 4 for an example

with K = 3 and bk = 30 for k = 1, 2, 3. The points in the

figure represent customers, and the numbers next to the points

give the ai . The dashed lines define the customer cones, and

the solid lines the vehicle cones.

In our current computer implementation, the traveling sales-

man problems for the customers assigned to each vehicle are solved

optimally using an algorithm similar to the one reported in

Miliotis [15], [16]. We use Gomory's Method of Integer Forms

to solve formulation (1"), (5') - (8') with the Yik fixed.

Constraints in the set (7') are generated only as needed.

Our algorithm for the generalized assignment problem is

based on a Lagrangian relaxation in which the multipliers

are determined by a primitive ascent method of the type

described in Fisher [6]. This algorithm has outperformed

the very successful Ross and Soland (18] algorithm. A

detailed description is given in Fisher, Jaikumar and Van

Wassenhove [8].

We are currently experimenting with a number of possible

variations on the heuristic we have described here. These

include different seed customer selection rules, the use of

a modified insertion cost ala Gaskell [9] and Yellow (221, and
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schemes for iteratively adjusting the d ik In this last

approach, we solve the generalized assignment problem several

times, adjusting the dik after each solution to better

approximate f(yk ) .

An optimizing algorithm can also be constructed by using

this iterative procedure with Benders decomposition [13.

Each time the generalized assignment problem is solved, a

lower linear support of f~yk ) is constructed from the dual

variables of (1"), (S') - (8') and added to the generalized

assignment problem. To obtain dual variables, we relax

integrality on xijk or impose this integrality with standard

integer programming cuts. A complete description of this

approach is given in Fisher and Jaikumar [7].
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4. Computational Results

Computational tests were performed using 12 standard test

problems taken from the literature. Our method was compared

with four other heuristics:

(i) Clarke and Wright (51

(ii) Sweep (101

(iii) Christofides, et al.tree search (4]

(iv) Christofides, et aL 2 phase [41

Summary characteristics of the 12 problems are given in

Table 1. In these problems, the bk were identical for all k.

The value in the column headed K* is the minimum number of

trucks that will admit a feasible solution. Specifically,
K* l n K*

K* satisfies Z bk < E ai < Z b In a few cases, Clarke and
K=1 il k=l

Wright required more than K* vehicles. Otherwise, all results are

with K = K*. The last column gives an indication of the tight-

ness of the vehicle capacity constraints.

All test problems were planar. That is, customers are

located at points in the plane, and cij is the Euclidean dis-

tance between points i and j. Problems 1, 2 and 3 are 50, 75

and 100 customer problems respectively. The data for these

problems was randomly generated and is given in [2]. Problem

4 is a 150 customer problem produced by adding the customers

of problems 1 and 3 with the depot and vehicle capacities as

in problem 3. Problem 5 is a 199 customer problem produced by

adding the customers of problem 4 with the first 49 customers

of problem 2. Problems 6 to 10 are the same as problems 1 to 5

with additional restrictions on the maximum allowable route



Table 1 Summary of Problem Characteristics

n x
problem n K* z ai b

/<k=l
1 50 5 .97

2 75 10 .97

3 100 S .93

4 150 12 .94

5 199 17 .95

6 50 6 .81

7 75 12 .81

8 100 9 .83

9 150 15 .71

10 199 19 .77

11 100 10 .91

12 100 i0 .91



...... crobl.em. The restrictions on route times for

7rcbleys 6 tc 10 respectively are 200, 160, 230, 200 and 200.

Travel times between customers are assumed to be equal to the

distance between the customers. Additionally, an unloading

time of 10 units is incurred for each customer stop.

The introduction of a constraint on route time requires

a modification of our heuristic as given in the previous section.

Anal-gous to the function f(yk) defined in section 2, we define

t(yk) to equal the travel time of an optimal tour of the customers

in N(yk ) = filyik = I}. A linear approximation of t(yk) is

constructed using the method for approximating travel cost

given in section 3. The linear approximation of t(yk) is

used to construct a linear constraint that approximates the

route time restriction. These linear route time constraints

are then added to the generalized assignment problem (I'),

(2), (3) and (4). An algorithm to solve this generalized

assignment problem with side constraints is described in [8].

This algorithm employs a dualization of the side constraints.

Because the route time constraints are approximate, a final

feasibility check is required.

Problems 11 and 12 are structured problems in which customers

are grouped in clusters. These problems seem to resemble real

problems more closely than problems 1 to 10. The data for these

problems is given in [4].

A comparison of the five methods is reported in Table 2.

Results for our method were obtained by us; results for the

other four methods are taken from [4].
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Table 3 prcvides a ccmparison of solution qcuality and

runnina time for the five methods. In terms of solution cualit-i,

the Fisher-Jaikumar generalized assignment method clearly

outperformed the other four. The generalized assignment method

found the best solution in 9 of the 12 problems and had the

lowest average solution value over all 12 problems.

The closest competitor was the Christofides et al. tree

search method. This is a restricted branch and bound method

and is theoretically capable of solving the problem optimally

if the restrictions on branching and searching the tree are

removed. The quality of the results depends on how much restric-

tion is placed on the tree search. With increasing quality,

one suffers the progressive increase in computation times.

Besides, the form of this algorithm implies that computational

times will increase exponentially with the number of customers,

as can be seen in Table 1.

The Christofides, et al. two phase method is similar to

the method presented here in that both methods select seed

customers, c~mpute insertion costs, and then assign customers

to trucks based on these costs. The Christofides et al.

t-o phase uses a heuristic to make this assignment, while the

Fisher-Jaikumar method optimally solves a generalized assign-

ment problem. If the insertion costs are reasonable approxi-

mations of the true costs, then the generalized assignment

method should perform uniformly better than the two phase

method. This is substantiated by the results. The two phase
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method obtains the best solution in only one of the twelve

problems and is 2.4% more expensive on average than the

generalized assignment method. In the two problems where the

two phase method outperforms the generalized assignment method,

we conjecture that the difference is probably due to a different

method of selecting the seed customers and if the same seed

customers and insertion costs are used, the generalized assign-

ment method should do better.

The version of Sweep implemented in [4) applies the

basic Sweep iteration described in section 2 for many different

starting rays. The solution values reported are the best of

these numerous runs. The solution times are the sums of the

times for different starting rays. The Sweep method did

uniformly better than the Clarke and Wright method for the

random problems I to 10, but worse for the structured prob-

lems 11 and 12. Both methods were substantially poorer than

the generalized assignment method.

CPU times for the generalized assignment method (see

table 2) are smaller on average than all other methods except

Clarke and Wright. The Clarke and Wright times are only

slightly smaller, and its performance in terms of solution

quality is much worse.
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We also note that Russell (191 has obtained solutions to

the first 3 problems with costs of 524, 854, and 833 respectivelv.

However, the computational requirements of his method are

prohibitive. The CPU times on an IBM 370/168 (a faster machine

than the DEC 10) for these 3 problems were 15, 245 and 100

seconds respectively.

In conclusion, the Fisher-Jaikumar generalized assignment

method has demonstrated impressive computational performance

on a wide range of test problems.
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